

DISASTER RISK ASSESSMENT IN THE DANUBE MACRO-REGION

Miklós Székely, Hungary

- Frequency and severity of weather anomalies/natural hazards are changing
- Costs of disaster preparedness, response, recovery and mitigation has been steadily rising → increasing burden to DM
- DRR → effective climate adaptation concept/tool

BACKGROUND & RATIONALE

GEOGRAPHICAL SCOPE OF THE PROJECT

Lead Partner: National Directorate General for Disaster Management, Ministry of the Interior (Hungary)

 Develop a common disaster risk assessment method for the region in case of disasters intensified/created by climate change

 Raising local communities' climate change and risk awereness and enhancing their preparedeness

Aiming for a comprehensive RA & DRR common toolkit

ENERGIAKLUB CLIMATE POLICY INSTITUTE

APPLIED COMMUNICATIONS

1. THE COMMON DISASTER RISK ASSESSMENT METHODOLOGY

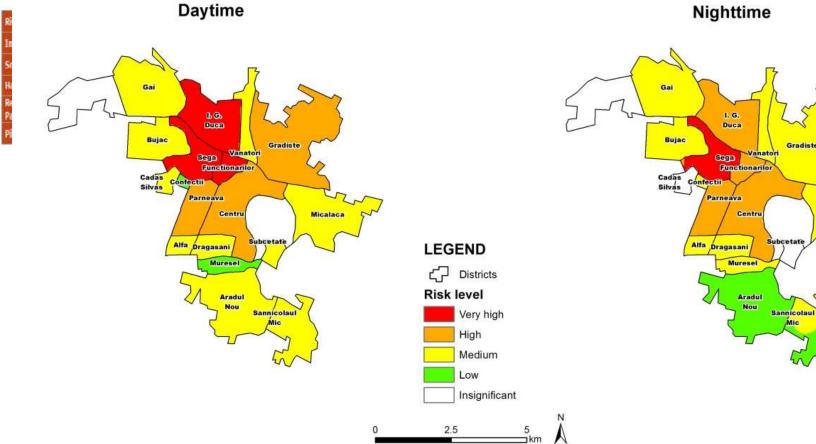
Pilot Area	Hazard Type	
BULGARIA	Wildfires	
ROMANIA	Heat wave	\rightarrow
SERBIA	Drought related wildfires	
HUNGARY	Thunderstorms	
SLOVAKIA	Floods	
BOSNIA & HERZEGOVINA	Floods	

2. RISK SCENARIOS

- Important part of the Risk Identification stage
- Risk scenarios are a plausible description of how the future may develop in case of a disaster event. (EC RA and mapping guidelines, 2010)

TEMPL	ATE FOR DEVELOPING RISK SCENARIO
	os will serve as a basis for disaster management field simulation exercises so the textual
	of each step should be concise and straight to the point. Therefore keeping paragraphs as sible is very important.
	characteristics
	entifying the hazard to be analysed
Type of haz Drought.	ard;
	o climate change scenario increase of temperature and decrease of precipitation are
	the future so causing factors will be accentuated
	pecifying and describing the causing factor of the event
Natural caus	sing factor(s) of the disaster events:
Prolonged p	eriod of precipitation shortage (intensity is defined by SPI). In combination with low ground
	ves and high temperatures drought can be intensified.
Step 1.3 De	efining likelihood
	f the worst case disaster event based on the risk matrix:
1. COM	o the risk matrix for the Kanjiža municipality the worst case scenario is likely to happen onc
per 100 or n	tore years.
	fining intensity
	he disaster event based on the risk matrix:
	the risk matrix for the Kanjiža municipality the worst case scenario is situation in which
value of SPI	is less or equal than -2 .326.
Step 1.5 De	fine extent
Define the a	rea that will be affected (administrative unit, catchment, or in Km ²)
	drought affects large area. Consequently, affected area in any case would be the whole
administrativ	ve unit of Kanjiža municipality (399 km²).
2 Contou	t of the incident: disaster circumstance and vulnerability details

3 1 RISK MAPS

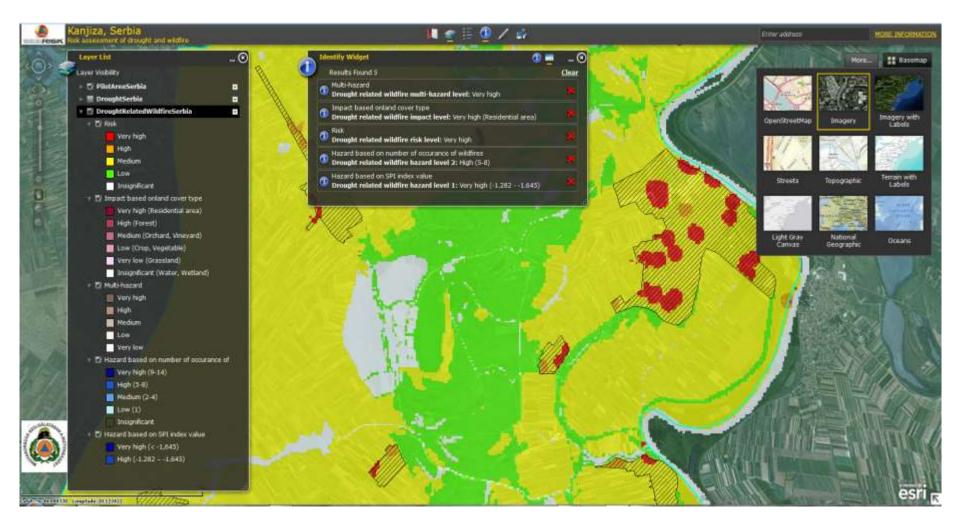

Micalaca

Mic

Risk assessment of heat wave in city of Arad, Romania

Step 3: Risk maps

SOUTH EAST EUROPE Transnational Cooperation Programme



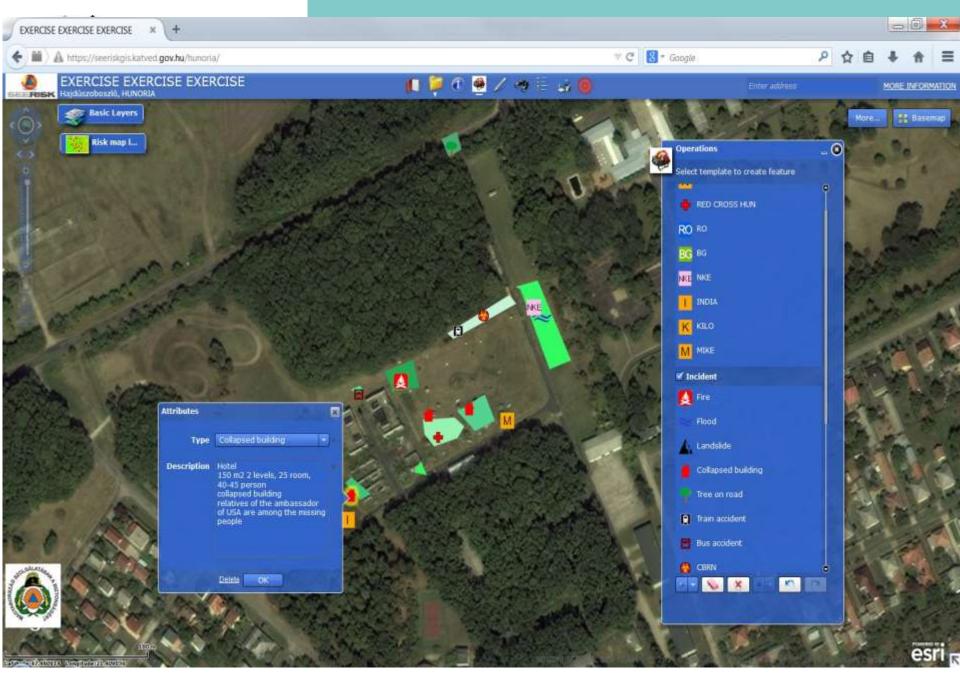
ENERGIAKLUB CLIMATE POLICY INSTITUTE APPLIED COMMUNICATIONS

3.2 WEB MAP APPLICATIONS

http://www.seeriskproject.eu/seerisk/#main

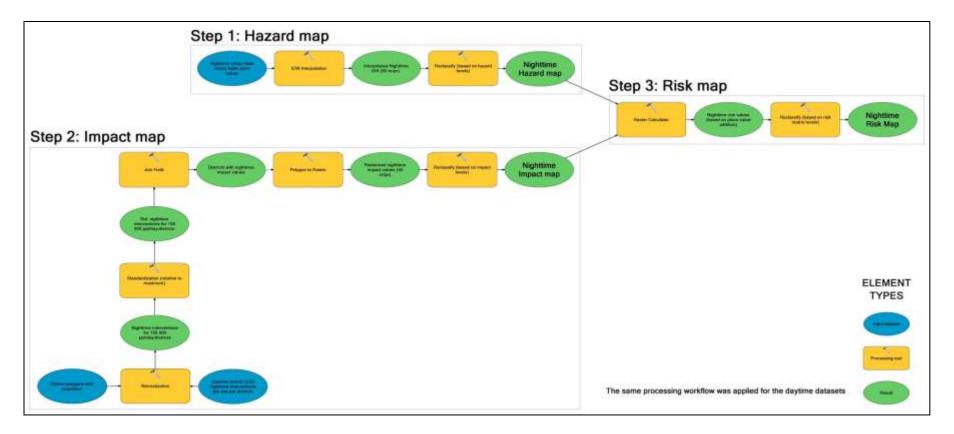
4. CCA and RA Guideline

 Summarizes SEERISK project results


 Formulates specific CA recommendations for municipalities

GUIDELINE

ON CLIMATE CHANGE ADAPTATION AND RISK ASSESSMENT IN THE DANUBE MACRO - REGION


Jointly for our common future

8. GIS BEST PRACTICES

• Technical Guide for Risk Mapping

Example model of workflow process of risk mapping

- Providing a set of communication practices, channels, methods and tools to conduct effective communication before/during disasters
- It contains parts of prevention, or pro-active communication strategies

THANK YOU FOR YOUR ATTENTION!

Miklós Székely miki.szekely@gmail.com